Comment gérer un écran 6K ? Le cas de l’Apple Pro Display XDR

Le nouvel écran d’Apple interpelle, tant par son prix que sa définition. Mais aussi par les technologies utilisées pour le relier à un Mac. La compatibilité est plutôt limitée, et il y a de bonnes raisons techniques derrière. Je vais essayer de résumer le tout. Je ne suis pas certain à 100 % des informations, je n’ai pas l’écran ni les Mac adaptés, mais je suis parti de données techniques assez factuelles, donc ça devrait être correct.

Attention, ça va être technique.

6K pour l’écran Apple (et 5500 € sans pieds)

Je vais commencer par la norme DisplayPort. Elle fonctionne avec ce qu’on appelle des lignes (comme en PCI-Express), entre une et quatre dans une prise classique. Dans une prise classique, on utilise quatre lignes. Dans de rares cas, comme avec les adaptateurs USB-C qui sortent de la vidéo et de l’USB, on se limite à deux lignes. Ensuite, il y a le mode de transfert, qui porte le nom de HBR (High Bit Rate). Le HBR1 (vieux, DisplayPort 1.1) est à 2,7 Gb/s par ligne, le HBR2 (Displayport 1.2) à 5,4 Gb/s par ligne et le HBR3 (DisplayPort 1.3) à 8,1 Gb/s par ligne. En plus de ces modes, il existe aussi une compression (DSC) qui permet de réduire la bande passante nécessaire en compressant « sans pertes visuelles visibles » (je vais y revenir). Pour résumer, avec quatre lignes (la valeur classique), on a 8,6 Gb/s en HBR1 (une partie de la bande passante sert à l’encodage), ~17,3 Gb/s en HBR2 et ~25,9 Gb/s en HBR3.

Premier truc lié, il faut que le GPU supporte les technologies. Tous les Mac modernes (depuis le Thunderbolt 2) supportent le HBR2. Le HBR3, plus récent, ne fonctionne que sur les cartes AMD à base de Polaris (Radeon RX 500), Vega ou Navi (5000). Le DSC, lui, ne fonctionne que sur les cartes à base de Navi, donc actuellement (janvier 2020) sur le MacBook Pro 16 pouces et certains GPU du Mac Pro (la Radeon Pro W5700X, pas encore en vente). Si vous avez une carte Intel, la question ne se pose pas : il n’y a pas de support du HBR3 actuellement dans les Mac (il faut attendre Ice Lake).

Cette carte graphique à plus de 6000 € ne supporte pas le DSC

Maintenant, le Thunderbolt. La première version transporte 8 lignes HBR1. La seconde version 8 lignes HBR2. La troisième version, elle, reste à 8 lignes HBR2 dans la majorité des cas. Attention, ça va devenir compliqué : il existe plusieurs contrôleurs Thunderbolt 3, et ils n’ont pas les mêmes fonctions. Le contrôleur original porte le nom d’Alpine Ridge et se retrouve dans la majorité des Mac depuis les MacBook Pro 2016. Le Titan Ridge, lui, gère le HBR3 (5 lignes) mais ne se retrouve que dans quelques Mac : les MacBook Pro 2018 (et plus), les iMac (2019) et le Mac Pro. Les Mac mini (2018), MacBook Pro (13 pouces) et MacBook Air (2018) ont aussi un Titan Ridge mais le GPU Intel ne supporte pas le HBR3. En pratique, ça fonctionne aussi avec un eGPU BlackMagic, qui possède un contrôleur Titan Ridge et un GPU compatible HBR3 (mais pas DSC). Vous trouverez pleins de détails dans ce sujet.

Troisième étape, la définition. On l’a vu, le DisplayPort offre une bande passante assez large. Pour se donner une idée, un écran 1080p 60 Hz demande 3,2 Gb/s, un écran 1440p monte à 5,6 Gb/s et un écran 4K60 monte à 12,5 Gb/s. Les deux premiers marchent donc en HBR1, mais pas le troisième. Un écran 5K, toujours à 60 Hz, demande ~22,2 Gb/s, et un écran 6K comme celui d’Apple demande ~33 Gb/s (un peu plus à cause du HDR, mais je ne sais pas comment le calculer).

Pour transmettre autant de données, il n’y a en pratique que deux solutions : le mode HBR3 à travers du Thunderbolt 3 (5 lignes, ~40 Gb/s) ou la compression. Même huit lignes HBR2 ne suffisent pas.

Enfin, dernier point un peu compliqué, le mode de transfert. Quand un moniteur demande plus de lignes que ce que propose une prise classique (par exemple un écran 5K en HBR2), il existe différentes façon d’utiliser les lignes supplémentaires. Le premier mode, abandonné depuis pas mal d’années, porte le nom de MST (Multi Stream Display). Il a été implémenté sur les premiers écrans 4K, et montre deux écrans au système. La carte graphique voit deux écrans et l’OS doit ensuire reconstruire l’image. C’est plus ou moins efficace (moins que plus) et se retrouver avec une demi dalle active n’est pas exceptionnel (j’ai un écran de ce type au boulot). Ensuite, il y a les écrans SST (le fonctionnement classique). Puis les Dual Link SST. Comme en DVI, ils utilisent plusieurs lignes, mais ne montrent qu’un seul écran au système. Le Dual Link SST peut fonctionner en interne (cas des iMac 5K), en externe avec deux câbles (Dell ou HP font ça avec les écrans 5K) ou avec un seul câble Thunderbolt, comme les écrans 5K LG ou le 6K Apple.

Dans la pratique

De ce que j’ai vu, l’écran Pro Display XDR fonctionne de deux façons. Soit en Dual Link SST avec cinq lignes HBR3, soit en SST avec quatre lignes HBR2 et de la compression. Le premier cas va être celui de la majorité des Mac compatibles : iMac 2019, MacBook Pro 15 pouces 2018, Mac Pro 2019 et eGPU BlackMagic. Dans ce mode, il ne reste pas assez de bande passante pour de l’USB rapide, et les ports USB-C derrière l’écran sont limités à l’USB 2.0.

Le second cas ne se retrouve que sur le MacBook Pro 16 pouces et éventuellement sur le Mac Pro 2019 avec une carte Navi (Radeon Pro W5700X, pas encore sortie). Il compresse l’image, et permet donc de garder de la bande passante pour de l’USB 3.0 (5 Gb/s).

Du coup, pourquoi l’iMac Pro ne peut-il pas gérer l’écran 6K en 6K ? Parce que son contrôleur Thunderbolt est un Alpine Ridge qui ne supporte pas le HBR3 (même si la carte graphique le supporte) et que la carte graphique ne prend pas en charge la compression DSC.

Pas de 6K pour l’iMac Pro

Si Apple se décide à mettre des processeurs Ice Lake (la 10e génération en 10 nm d’Intel) dans ses machines, le Mac mini, le MacBook Air ou les MacBook Pro 13 pouces pourraient profiter de l’écran : le GPU de ces processeurs prend en charge le HBR3 et le DSC.

Maintenant, les eGPU. Les cartes qui ne supportent que le HBR3 (Polaris ou Vega) ne peuvent pas gérer l’écran d’Apple en 6K, sauf dans le cas particulier du modèle de BlackMagic qui intègre le Thunderbolt 3 directement. De ce que j’ai vu, il fonctionne en USB-C ou en Thunderbolt 2 et 3 sans Titan Ridge (même si la documentation ne l’indique pas explicitement) avec quelques limites. En théorie, un eGPU avec une carte Navi (Radeon RX 5000) et un adaptateur DisplayPort vers USB-C devrait le faire fonctionner en 6K, mais je ne suis pas certain. Dans tous les cas, le fait que l’écran ne propose que de l’USB-C (ou du Thunderbolt 3) en entrée risque de poser des soucis avec un eGPU : l’USB-C n’existe pas dans les cartes AMD actuellement.

La compression

La question à 5 500 € (sans pieds) : est-ce que la compression a un impact visible ? L’association VESA présente cette compression comme avec pertes, mais sans pertes visuelles et sans latence. la compression théorique se situe entre un facteur 2 et un facteur 3, donc c’est plutôt efficace. Je dois avouer que je suis un peu dubitatif tout de même et que je n’ai pas trouvé de comparaison ni de test. Les moniteurs qui utilisent le DSC restent rares (il y a un écran 8K chez Dell, par exemple) et la comparaison directe n’est pas évidente : on a rarement le choix. En fait, l’écran Apple est potentiellement le meilleur client pour la comparaison vu qu’il fonctionne avec ou sans DSC.

L’écran 8K de Dell

Dernier point, l’écran 8K de Dell. Vu qu’il utilise du DSC et du HBR3 avec deux prises DisplayPort, il devrait (noter le conditionnel) fonctionner sur un MacBook Pro 16 pouces ou sur un Mac pro avec une (future) Radeon Pro W5700X. Mais vu la tendance habituelle d’Apple pour brider les écrans, je ne suis pas certain. En fait, on peut même supposer que l’atypique « 6K » d’Apple a été choisi parce qu’il permet justement de connecter un écran en Thunderbolt 3 sans passer par la compression.